
J. Fluid Mech. (2000), vol. 422, pp. 281–317. Printed in the United Kingdom

c© 2000 Cambridge University Press

281

Lubrication theory in highly compressible
porous media: the mechanics of skiing,
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A generalized lubrication theory that is applicable to highly deformable porous layers
is developed using an effective-medium approach (Brinkman equation). This theory
is valid in the limit where the structure is so compressible that the normal forces
generated by elastic compression of the fibres comprising the solid phase are negligible
compared to the pressure forces generated within the porous layer. We assume that
the deformation of the solid phase is primarily due to boundary compression as
opposed to the motion of the fluid phase. A generalized Reynolds equation is derived
in which the spatial variation of the Darcy permeability parameter, α = H/

√
Kp, due

to the matrix compression is determined by new local hydrodynamic solutions for the
flow through a simplified periodic fibre model for the deformed matrix. Here H is
the undeformed layer thickness and Kp the Darcy permeability. This simplified model
assumes that the fibres compress linearly with the deformed gap height in the vertical
direction, but the fibre spacing in the horizontal plane remains unchanged. The model
is thus able to capture the essential nonlinearity that results from large-amplitude
deformations of the matrix layer.

The new theory shows that there is an unexpected striking similarity between the
gliding motion of a red cell moving over the endothelial glycocalyx that lines our
microvessels and a human skier or snowboarder skiing on compressed powder. In
both cases one observes an order-of-magnitude compression of the matrix layer when
the motion is arrested and predicts values of α that are of order 100. In this large-α
limit one finds that the pressure and lift forces generated within the compressed
matrix are four orders-of-magnitude greater than classical lubrication theory. In the
case of the red cell these repulsive forces may explain why red cells do not experience
constant adhesive molecular interactions with the endothelial plasmalemma, whereas
in the case of the skier or snowboarder the theory explains why a 70 kg human can
glide through compressed powder without sinking to the base as would occur if the
motion is arrested. The principal difference between the tightly fitting red cell and
the snowboarder is the lateral leakage of the excess pressure at the edges of the
snowboard which greatly diminishes the lift force. A simplified axisymmetric model is
presented for the red cell to explain the striking pop out phenomenon in which a red
cell that starts from rest will quickly lift off the surface and then glide near the edge
of the glycocalyx and also for the unexpectedly large apparent viscosity measured by
Pries et al. (1994) in vivo.
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1. Introduction
In this paper we shall present the detailed development of a generalized lubrication

theory based on an effective-medium approach (Brinkman equation) that is applicable
to highly deformable porous layers. In particular, we shall want to look into the limit
where the porous structure is so compressible that the normal forces generated by
elastic compression of the fibres comprising the solid phase are negligible compared
with the pressure force generated within the porous layer and the deformation of
the solid phase is primarily due to boundary compression as opposed to the motion
of the fluid phase. The most important new feature that we wish to capture in the
model is the large nonlinearity that results from order-of-magnitude spatial variations
in Darcy permeability that arise from the large-amplitude deformations of the fibre
matrix. We shall show that the lift forces generated in such layers can be orders of
magnitude larger than the lift forces generated in classical lubrication theory. Existing
lubrication analyses have been limited to either a pure fluid layer satisfying a classical
Reynolds equation or mixture or biphasic theories where the matrix deformation is
small enough to neglect the changes in Darcy permeability due to the compression.
The generalized Reynolds equation derived herein reduces to the analysis in Damiano
(1998) and Secomb et al. (1998) for the case of one-dimensional flow with uniform
Darcy permeability.

The initial motivation for this study grew out of several fundamental questions
relating to the role of the thin fibre matrix layers that surround cells in an in vivo fluid
environment, see Weinbaum (1998). One of the most important of these layers is the
endothelial glycocalyx, a negatively charged layer of glycoproteins and proteoglycans
that uniformly coats the luminal surface of vascular endothelium. This layer has been
estimated to vary from 0.1 µm in in vitro studies of frog mesentery capillaries, Adamson
& Clough (1992), to 0.4 µm in in vivo studies of hamster cremaster microvessels, Vink
& Duling (1996). From a hydrodynamic viewpoint this layer can be thought of as
a hydrated gel, whose fibre volume fraction has been theoretically estimated to be
between 1 and 2%, (Curry 1986; Weinbaum, Tsay & Curry 1992). This extracellular
layer has recently been proposed to be the primary molecular filter or osmotic
barrier that determines the Starling forces that act across vascular endothelium
(Michel 1997; Weinbaum 1998; Hu & Weinbaum 1999). To serve this function
the barrier must exclude albumin (7 nm in diameter) and other plasma proteins.
Since numerous permeability studies in many tissues have shown that the reflection
coefficient approaches 1.0 as the solute size approaches that of albumin, the open gap
between fibres has generally been assumed to be close to 7 nm, at least in the sieving
part of the layer. This hypothesis is strongly supported by the recent experiments
described in Henry & Duling (1999) where it is shown that low molecular weight
dextrans of comparable size to albumin do not penetrate the glycocalyx in vivo unless
its permeability is altered by an enzyme that is known to degrade the hyaluronan side
chains of the matrix.

While the existence of the surface glycocalyx has been known for several decades,
Luft (1965), it is only in the past few years that its importance in capillary hemody-
namics and cell motion has been appreciated (Vink & Duling 1996; Damiano 1998;
Secomb, Hsu & Pries 1998). In the case of the mammalian red cell, 8µm diameter cells
are easily able to squeeze through 5–6 µm true capillaries with a separation distance
near the wall that is typically 0.5 to 0.6 µm when the cells are moving at typical
speeds of several hundred microns per second, Vink & Duling (1996). However, this
separation distance appears to essentially vanish when the motion of the red cells
is arrested, indicating that the matrix layer is highly deformable and more flexible
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than the membrane cytoskeleton of the red cell. In larger microvessels, where the red
cells may not travel in single file, a similar separation distance is observed (Henry &
Duling 1999; Schmid-Schoenbein 1999). One of the most puzzling conundrums is the
large difference in the in vitro and in vivo viscosity laws measured when the resistance
of red cells in capillary networks is compared with their motion in small glass tubes
(Pries, Neuhaus & Gaehtgens 1992; Pries et al. 1994). Significant differences start to
appear for vessels smaller than 40µm diameter, which grow to an order of magnitude
or more for true capillaries. In the case of white cells the tips of the microvilli are
known to be coated with adhesion molecules that promote the tethering and adhesive
interaction of leukocytes with transmembrane receptors and ligands in the endothelial
plasmalemma. The interaction of these microvilli with the endothelial glycocalyx is
treated for the first time in Feng, Ganatos & Weinbaum (1998).

While these fundamental biological questions provided the initial motivation for the
new theory proposed herein, the critical insights for understanding these phenomena
arose from crude measurements by the senior author of the depth of ski tracks in
freshly fallen snow at a ski resort in the northern Catskills. Nearly every experienced
skier will tell you that skiing on dry powder is like riding on air. Expert skiers achieve
velocities in excess of ten times their body height per second due to gravitational
forcing. However, this relative velocity is small compared to that which the red cell
experiences in navigating through the microcirculation due to pressure forcing. A red
cell can achieve a velocity that approaches 100 times its diameter per second. The fact
that a red cell can travel at such velocities in microvessels less than their diameter and
survive on average for 120 days without undergoing hemolysis is one of the miracles
of microcirculatory mechanics. Both dry snow powder and the endothelial glycocalyx
share a common property that they are highly porous and easily compressed. Neither
will support the compressive forces they are subjected to when the motion of the
red cell or skier is arrested. Snow will compress tenfold when it has to bear the
static load due to the weight of the skier and, as noted above, a red cell will crush
the surface glycocalyx and fill nearly the entire lumen of a microvessel due to the
elastic restoring forces in its membrane and cytoskeleton when its motion is arrested.
The crude measurement of the depth of the ski tracks readily confirmed that the
skier could rise off the packed base and create a thin layer of partially compressed
dry powder beneath the ski. Rough estimates of the lift forces predicted using a
conventional lubrication theory based on a classical Reynolds equation indicate that
such forces would support a weight of order 10 g for a constrained air layer beneath
the ski at small tilt angles. This is four orders of magnitude smaller than the weight
of a 70 kg human being with his/her skis. The Darcy permeability, Kp, of snow has
been measured for various conditions, Jordan et al. (1999), but there are no data to
our knowledge which show the variation of Kp with compression. We shall use a fibre
matrix model which predicts values for Kp which compare favourably with measured
values for fresh snow powder and then assume that this powder compresses in a
manner that is similar to the endothelial glycocalyx.

The foregoing observation suggested that there might be a striking similarity
between a human skier or snowboarder gliding through dry snow powder and the
red cell skimming along the surface of the endothelial glycocalyx. In the case of snow
the lift forces generated by the porous media protect the bottom of our skis from
the roughness of the surface beneath the powder and in the case of the red cell the
endothelial surface glycocalyx prevents molecular-level adhesive interactions between
the endothelial surface and the red cell membrane. This membrane can be thought
of as a snowboard and the red cell itself as an extraordinarily efficient skier. In both
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cases, we shall show that the pressure forces generated within the compressed porous
layer are approximately four orders of magnitude greater than predicted by classical
lubrication theory where the gap is filled with a pure fluid. However, the red cell is far
more efficient since for the human skier or snowboarder much of the excess pressure
that is built up beneath the planing surface leaks out at the lateral edges of the ski
or snowboard.

1.1. Previous models for red cell motion

Numerous models based on classical lubrication theory have been developed over the
years to describe the motion of red cells in microvessels. Until 1995 the vessel wall
was treated as a circular cylindrical tube without matrix. The red cells were initially
modelled as either rigid or deformable pellets (Lighthill 1968; Barnard, Lopez &
Hellums 1969) or periodic arrays of spheres (Wang & Skalak 1969; Tozeren & Skalak
1978). More sophisticated models were then developed to predict the axisymmetric
deformed shape of a moving cell using measured properties of the red cell membrane
(Secomb & Gross 1983; Secomb et al. 1986). In the latter studies membrane shearing
and bending stresses are treated within the framework of axisymmetric lubrication
theory. It is only recently that the critical role of the endothelial surface glycocalyx in
red cell motion has been recognized. The so-called ‘sugar coat’ of glycoprotein fibres
was first identified by Luft (1965), but it was not until 1992 that Adamson & Clough
(1992) clearly demonstrated in vitro that this coat was of nearly uniform thickness
(0.1 µm) and that this thickness depends on the proteins present in the perfusate.
The first in vivo measurement of the glycocalyx in hamster cremaster microvessels by
Vink & Duling (1996) indicated a significantly thicker glycocalyx (0.4 µm) than the
electromicroscopic studies of Adamson & Clough, where the thickness could have
been underestimated due to dehydration artifacts. Vink & Duling also demonstrated
that if the glycocalyx were non-invasively removed using epifluorescence, the red cell
would fill the entire lumen. Perhaps most intriguing, if a red cell were started from
rest it would exhibit a striking pop out phenomenon in which it would quickly lift
off the surface and then glide near the outer edge of the matrix layer.

The first models that attempted to take account of the matrix layer, Damiano et
al. (1995) and Wang & Parker (1995), used lubrication and binary mixture theory to
describe the motion of rigid particles in a circular tube whose walls were covered by
a porous medium. In more recent analyses, Damiano (1998) and Secomb et al. (1998)
have extended this model to a deformable cell without bending stiffness which moves
within the fluid core. Damiano assumes that a thin pure fluid layer exists between
the edge of the glycocalyx and the red cell membrane, whereas Secomb et al. assume
a value for Kp that varies with distance from the wall and vanishes in the fluid core.
This model allows for the penetration of the matrix but not its compression. The
presence of a matrix free fluid layer between the red cell and the glycocalyx provides
a low-resistance pathway for the relaxation of the pressure in the matrix and the new
phenomena described in this paper are absent. No previous model has attempted to
describe the penetration of the red cell into a compressible matrix or the pop out
phenomenon wherein the cell rises off the wall at low velocity. Furthermore, the zero
drag condition, which describes the global force balance on the red cell, must be
modified to take account of the integrated distributed force of the fibres.

1.2. Skiing, snowboarding and tobogganing

To our knowledge this is the first time that the mechanics of skiing or snowboarding
has been approached from the viewpoint presented in this paper. The theory in its
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present form is most applicable to a snowboard or toboggan moving on a layer of dry
compressed powder, since the lateral dimensions of a typical ski, 10 cm, are too narrow
for lubrication theory approximations to be rigorously applied. Nevertheless, if the
present results are integrated across the width of the ski they provide a centreline
theory for a long, slender planing surface. There is an extensive literature on the
hydrodynamics of water skiing or planing on a free surface. The fundamental lift
mechanism in the latter application is inertial and not viscous and the lift forces are
generated by the momentum of the fluid that is pushed ahead of the planing surface.
This mechanism might be operative in snow ploughing or turning, where the edges
of the skis or snowboard are turned into the snow, but it is intuitively clear that
large lift forces cannot be generated by the inertia of the snow in the normal skiing
position because of the low angle of attack relative to the snow surface and the fact
that the density of the snow is only about a tenth that of water. On the other hand,
the viscous lift forces predicted by classical lubrication theory, as noted previously,
would be several orders of magnitude too small. In the new theory two mechanisms
contribute to the tremendous increase in the lift force and the pressure distribution
under the planing surface. One is the large increase in the resistance of the air due
to the fact that it is literally pushed and dragged through the porous solid. The
resulting velocity profiles and streamlines depart dramatically from those in classical
lubrication theory. The second is the compression of the soft powder which greatly
increases the fluid resistance and the lift force acting at the back of the planing
surface. By slightly adjusting the angle of tilt the skier or snowboarder can regulate
the centre of pressure and come to an equilibrium position where moments due to
gravity and pressure cancel each other. In skiing, snowboarding or tobogganing the
snow will compress and the permeability parameter α will increase until the lift force
is just sufficient to balance the gravitational force.

The fundamental difference between the red cell gliding on the endothelial gly-
cocalyx and skiing or snowboarding is the pressure relaxation that occurs at the
lateral edges of the planing surface. This pressure loss is characterized by a second
parameter that appears in the governing equation, namely the aspect ratio L/W of
the ski or snowboard. For the same value of α, the dimensionless lift forces will be at
least two orders of magnitude lower than for the red cell. This is compensated for by
a greater density of the matrix. For the endothelial glycocalyx the estimated volume
fraction of the glycosaminoglycan (GAG) side chains in the undeformed solid phase
is approximately 1% to 2% and is unlikely to increase much beyond 10% during
compression. This is an order of magnitude smaller than the fibres that form the
crystals in a snow flake.

1.3. Deformation of the porous media

In mixture theory, which has been applied to the artery wall (Kenyon 1979) or
articular cartilage (Lai & Mow 1980; Hou et al. 1991), there is a governing equation
for the solid phase which relates the deformation of the porous matrix to the fluid
flow. In the present approach we shall propose a much simplified model for the
elastic deformation of the solid matrix phase based on the fact that this deformation
is assumed to occur primarily due to the normal compressive force between the
confining boundaries and not the fluid force on the matrix elements. This is a good
approximation for the endothelial glycocalyx since experiments have shown that the
matrix is not disrupted even by the passage of a tightly fitting white cell and that the
glycocalyx rebounds in less than a second to its initial thickness due to weak osmotic
forces that are associated with the trapping of proteins by matrix fibres (Vink &
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Duling 1996). The same behaviour is observed in the red cell pop out phenomenon
where the glycocalyx quickly rebounds after the red cell motion starts (Vink, private
communication). In the case of snow the solid phase moves due to the pressure
gradient established by the motion of the air, but this velocity is small compared to
that of the air that passes through the porous medium both because of packing and
the large difference in the density of the two phases. It is thus a reasonable assumption
to neglect the motion of the crystal phase and assume that the air is passing through
a porous structure that deforms without flowing. In contrast to the glycocalyx, snow
crystals have little or no rebound. However, this difference is inconsequential since
the osmotic restoring forces in the glycocalyx are small compared to the lifting forces
generated by the motion of the red cell over the compressed matrix.

The simplified model that we have constructed for the fibrous network lining the
vasculature assumes that the side chains of the glycoproteins form a two-dimensional,
diamond-shaped, parallel array perpendicular to the flow direction. The matrix com-
presses linearly with gap height in the normal direction, but in planes parallel to the
lower boundary the fibre spacing remains unchanged since there is negligible com-
pression in the lateral direction. However, the normal compression can induce a large
increase in the hydrodynamic resistance in the direction of flow. It is this increase
in fluid resistance due to the matrix that produces the large increase in pressure in
the fibre layer. In this simplified model, the Darcy permeability is a function of just
two dimensionless geometric parameters: the aspect ratio of the periodic fibre array
and the ratio of the initial undeformed fibre spacing and the fibre radius. The local
hydrodynamic resistance, or Darcy permeability, is then calculated using creeping flow
theory. This simple model retains the essential physics of the compression process,
and is a reasonable approximation to the much more complicated three-dimensional
fibre structure of the surface glycocalyx about which little is at present known. For
snow, no attempt is made to model the hexagonal crystal structure of the snow flake.
The model is intended only as a guide in predicting the variation of Kp with change
in snow layer thickness due to compression. The model predictions for skiing or
snowboarding should be reasonable since they provide reasonable agreement with the
measured value of Kp for snow in the undeformed state.

The paper is organized into seven sections. In § 2, a new Reynolds-type equation
is derived for highly compressible porous media in which the Darcy permeability is
spatially varying. In § 3 we develop the theory for predicting the spatial variation
of the local Darcy permeability. In § 4 we simplify the governing equation for a
one-dimensional planar surface where we assume there is no lateral leakage of
pressure. The resulting highly nonlinear differential equation is solved for large
deformations to show the effects of varying both the slope of the moving boundary
and the permeability parameter α. Results are shown for the pressure distribution, lift
force, velocity profiles and the streamline pattern. In § 5 we generalize these results
for two-dimensional planar surfaces with lateral edges as a model for skiing and
snowboarding. In § 6 we first derive a new global force balance for the zero drag
condition on the cell and then examine the pressure drop and apparent viscosity for
axisymmetric rigid models of red cells to provide new insight into the in vivo viscosity
law of Pries et al. (1994). Concluding comments and future directions are given in § 7.

2. Lubrication theory for the porous layer
Classical lubrication theory was initially developed by Reynolds for incompressible,

Newtonian fluid (Schlichting 1954). This was subsequently generalized for Newtonian
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fluids with variable properties and non-Newtonian fluids. The theory has been applied
to both impermeable and porous stationary and moving journal-bearing systems. In
biological applications, where the stresses are associated with the compression of a
porous solid phase, biphasic mixture theory has been extensively used to described
cartilage, Lai & Mow (1980), and more recently the endothelial glycocalyx (Wang &
Parker 1995; Damiano 1998; Secomb et al. 1998). In most of these previous analyses
the deformation of the porous matrix is sufficiently small for the Darcy permeability
to remain constant. As a result, the velocity profile in the lubricating layer depends
only on the local value of the pressure gradient and boundary velocity. However, as
the porous layer, which in the present application is either the endothelial surface
glycocalyx or dry snow powder, is compressed by the planing surface, the change
of the Darcy permeability Kp can be huge. This can lead to dramatic changes in
the pressure distribution in the matrix for large compressions. In the present theory,
a simplified anisotropic fibre matrix model is developed to account for the local
variation of the matrix permeability. Consequently, an additional parameter, which
depends on the local matrix height, appears in the new Reynolds-type equation
derived using effective-medium theory. For two-dimensional lubricating layer theory,
which is required for studying the mechanics of skiing or snowboarding, the geometric
aspect ratio of the planing surface will also play an important role.

For the general case, we consider a two-dimensional rigid boundary moving ar-
bitrarily with velocity U = (Ux,Ux,Uz) in Cartesian coordinates over a fibre layer
which is thin compared to the characteristic dimensions of the moving boundary in
the x- and y-directions. The local matrix height is denoted by h(x, y). Note that U and
h cannot be specified independently, because there is a simple Eulerian relationship
between them:

Uz =
∂h

∂t
+Ux

∂h

∂x
+Uy

∂h

∂y
. (2.1)

Nevertheless, it it convenient to treat U and h as though they were independent.
The effective-medium theory for flow in a fibre layer is described by the Brinkman

equation (Brinkman 1947)

µ

(
∇2 − 1

Kp

)
u = ∇p. (2.2)

The important difference between the present application of equation (2.2) and
previous studies is that a rational theoretical framework is formulated for predicting
the local spatial variation of Kp for large-amplitude compressions. Equation (2.2)
can be derived either by renormalization of the Stokes flow equation in a periodic
microscopic domain or by averaging the Stokes equation for flow in a random
assemblage of spherical particles (Howells 1974; Tam 1969; Lundgren 1972). Recently,
Howells (1998) studied flow through randomly distributed fibres by a renormalization
technique and recovered the Brinkman equation at the leading order. Feng et al. (1998)
have developed a boundary integral equation method for bounded particle motion in
a Brinkman medium and have applied the results to several biological problems in
cellular mechanics and transendothelial transport. The validity and accuracy of the
Brinkman equation in bounded porous media is also addressed in Tsay & Weinbaum
(1991) and Feng et al. (1998).

While it is obvious that inertial effects can be neglected in (2.2) for the endothelial
glycocalyx, this is not true for skiing or snowboarding. If inertial forces were added in
the x momentum equation this term would be O(ρU2

x/L). In contrast, the Darcy term
is O(µUx/Kp). Thus, the Darcy term would be greater than the inertial term provided
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Ux < µL/ρKp. Since Kp for the undeformed matrix can also be written as Kp = H2/α2,
where H is the thickness of the undeformed porous medium, this constraint on Ux can
also be written as Ux < νLα2/H2 where ν = µ/ρ is the kinematic viscosity. Our results
in § 5 show that α will typically vary between 100 and 400. Thus, for a representative
compressed powder layer where L = 1.5 m, H = 5 cm and ν = 0.1 cm2 s−1 at 0◦C, the
upper bound for Ux will fall in the range 60 to 960 m s−1. A similar analysis could
be applied in the y-direction and one would require Uy < νWα2/H2 where W is the
width of the snowboard. A typical snowboard has an aspect ratio of 5 and, thus, if
W = 30 cm, Uy < 12 m s−1 for α = 100 and < 192 m s−1 for α = 400. The actual mag-
nitude of the characteristic air velocity generated beneath the snowboard is readily
estimated by examining the characteristic pressure gradient developed in the x- and y-
directions beneath the snowboard. The characteristic pressure Pc due to the weight of
the snowboarder is Pc = Mg/LW . The characteristic pressure gradient Mg/L2W gen-
erated by the Darcy resistance, µUx/Kp, in the x-direction, therefore, leads to a charac-
teristic value for Ux of order MgH2/µL2Wα2. For a 70 kg human Ux is approximately
20 m s−1 for α = 100 and 1.2 m s−1 for α = 400. These values for Ux are significantly
smaller than the value for Ux where inertial forces are significant except for values
of α at the very low end. In general, one finds that there is a characteristic minimum
value of α where inertia should be considered. This minimum value of α is given by

α =
H

L

[
ρMg

µ2

(
L

W

)]1/4

. (2.3)

We introduce the dimensionless primed coordinates, velocities and pressure as

x′ =
x

L
, y′ =

y

W
, z′ =

z

H
, (2.4)

u′ =
u

Uc

, v′ =
v

Vc
, w′ =

w

Wc

, p′ =
p

Pc
, (2.5)

where L and W are the characteristic lengths of the moving surface in the x- and y-
directions. For a ski or a snowboard, L and W are its length and width, respectively. H
is the undeformed matrix gap height. In these dimensionless variables, the continuity
equation in Cartesian coordinates is rewritten as

∂u′

∂x′
+
Vc

Uc

L

W

∂v′

∂y′
+
Wc

Uc

L

H

∂w′

∂z′
= 0. (2.6)

For the coefficient of the dimensionless pressure gradient in the x-, y- and z-directions
to be unity, we choose the characteristic velocities as

Uc = Ux, Vc =
L

W
Ux, Wc =

H

L
Ux, (2.7)

and define the characteristic pressure Pc as

Pc =
µLUx

H2
. (2.8)

With these definitions of the characteristic velocities and pressure, the three com-
ponents of the Brinkman equation in (2.2) in Cartesian coordinates can be written
as

∂p′

∂x′
=

(
ε2
x

∂2

∂x′2
+ ε2

y

∂2

∂y′2
+

∂2

∂z′2
− α2

)
u′, (2.9)
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∂p′

∂y′
=

(
ε2
x

∂2

∂x′2
+ ε2

y

∂2

∂y′2
+

∂2

∂z′2
− α2

)
v′, (2.10)

∂p′

∂z′
= ε2

x

(
ε2
x

∂2

∂x′2
+ ε2

y

∂2

∂y′2
+

∂2

∂z′2
− α2

)
w′, (2.11)

where εx = H/L, εy = H/W and α is a dimensionless permeability parameter defined
in terms of Kp the Darcy permeability parameter,

α =
H√
Kp

. (2.12)

If we assume that both εx � O(1) and εy � O(1), then it is clearly seen from
(2.9)–(2.11) that the pressure gradient in the vertical direction is O(ε2

x) smaller than
that in either lateral direction. Thus we assume that the pressure is a constant across
the matrix layer, i.e. p = p(x, y), and to O(ε2

x) or O(ε2
y) equations (2.9) and (2.10)

reduce to equations similar to those obtained in classical lubrication theory (prime
omitted for brevity)

∂p

∂x
=

(
∂2

∂z2
− α2

)
u, (2.13)

∂p

∂y
=

(
∂2

∂z2
− α2

)
v. (2.14)

These equations in conjunction with the dimensionless continuity equation

∂u

∂x
+

L2

W 2

∂v

∂y
+
∂w

∂z
= 0 (2.15)

determine the flow within the thin layer of fibre matrix.
Solutions to (2.13) and (2.14) which satisfy the no-slip boundary conditions at z = 0

and z = h, the local dimensionless channel height, are given by

u =
sinh αz

sinh αh
+

1

α2

∂p

∂x

[
cosh αz − 1− sinh αz

sinh αh
(cosh αh− 1)

]
(2.16)

v =
W

L

Uy

Ux

sinh αz

sinh αh
+

1

α2

∂p

∂y

[
cosh αz − 1− sinh αz

sinh αh
(cosh αh− 1)

]
. (2.17)

Note that in view of the definition of Vc in (2.7), v at z = h is given by (W/L)(Uy/Ux).
The corresponding fluxes in the x- and y-directions are computed by integrating over
the local dimensionless channel height, i.e.

Qx =

∫ h

0

u dz = f(α, h) +
1

α2

∂p

∂x
(2f(α, h)− h), (2.18)

Qy =

∫ h

0

v dz =
W

L

Uy

Ux

f(α, h) +
1

α2

∂p

∂y
(2f(α, h)− h), (2.19)

in which

f =
cosh αh− 1

α sinh αh
. (2.20)

If we integrate the continuity equation (2.6) over the channel height and satisfy the
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dimensionless boundary conditions

U ′x(x, y, h) = 1, U ′y(x, y, h) =
W

L

Uy

Ux

, U ′z(x, y, h) =
L

H

Uz

Ux

, (2.21)

we obtain

∂Qx

∂x
+

L2

W 2

∂Qy

∂y
= − Uz

εxUX

+
∂h

∂x
+

L

W

Uy

Ux

∂h

∂y
, (2.22)

where the prime has been dropped for convenience. Inserting (2.18) and (2.19) in
(2.22), one obtains a generalized Reynolds equation for a Brinkman medium

∂

∂x

[
f +

1

α2

∂p

∂x
(2f − h)

]
+
L2

W 2

∂

∂y

[
W

L

Uy

Ux

f +
1

α2

∂p

∂y
(2f − h)

]
=
∂h

∂x
+
L

W

Uy

Ux

∂h

∂y
− 1

εx

Uz

Ux

.

(2.23)
In the limit α→ 0,

f → h

2
− α2h3

24
,

and equation (2.23) reduces to the classical Reynolds equation for an incompressible,
Newtonian viscous fluid,

∂

∂x

[
6h− h3 ∂p

∂x

]
+
L2

W 2

∂

∂y

[
6
W

L

Uy

Ux

h− h3 ∂p

∂y

]
= 12

[
∂h

∂x
+

L

W

Uy

Ux

∂h

∂y
− 1

εx

Uz

Ux

]
(2.24)

The lateral velocity components are given by (2.16) and (2.17). The vertical velocity
component w is calculated from the dimensionless continuity equation (2.15).

In the case of one-dimensional flow, where U = uxi and there is no flow leakage in
the y-direction, equation (2.23) reduces to

d

dx

[
f +

1

α2

dp

dx
(2f − h)

]
=

dh

dx
. (2.25)

This one-dimensional equation is suitable for describing the gliding motion of a red
cell membrane over the endothelial glycocalyx. Equation (2.25) is nonlinear since Kp

and hence α is a nonlinear function of x if large compressions of the matrix are
considered. Kp is determined from the solution of equations (3.2) and (3.3), presented
in the next section.

The modified Reynolds equation (2.23) can be solved for the pressure distribution
using the appropriate boundary conditions. Once the pressure field is determined,
the flow field, the lift force and the drag exerted on the moving membrane can be
calculated. These results, together with new features, which are absent for a pure fluid
layer, are discussed in subsequent sections.

3. Permeability of the porous layer
In this section, we propose a simplified model for the local change in Darcy

permeability that is suitable for both the endothelial glycocalyx and the flexible
crystals comprising snow powder. A schematic illustration of the geometry of the
model for the sliding motion of a planar membrane over a thin fibre matrix layer is
shown in figure 1(a). For simplicity, we model this surface matrix as a doubly periodic
fibre array with lateral and vertical fibre spacings ∆1 and ∆2, see figure 1(c, d). The
Darcy permeability Kp of the matrix depends upon the fibre radius a and the spacing,
which varies with position as a result of the non-uniform compression.
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Figure 1. (a) Schematic illustration of the present model for sliding motion of a rigid surface over
a thin layer of fibre matrix. (b) Blow-up of the inset in (a) shows an idealized model for the fibre
matrix which is composed of doubly periodic array of cylindrical fibres of radius a. The undeformed
fibre spacings in the lateral and vertical directions are denoted by ∆1 and ∆2H , respectively. (c) A
unit cell for a deformed hexagonal fibre array in which the Stokes equation is solved for the local
Darcy permeability. (d) A unit cell showing the deformed rectangular fibre array.

The simplified model that we have constructed for the compression of the fibrous
network assumes that the fibres in the matrix form a periodic two-dimensional,
diamond or rectangular shaped, parallel array perpendicular to the flow direction
that compresses linearly with change in gap height, H − h, in the vertical direction.
Thus, in planes parallel to the lower boundary the fibre spacing ∆1 remains unchanged,
since there is negligible compression in the lateral direction and only ∆2 changes with
the local deformation. Thus,

h

H
=

2a+ ∆2

2a+ ∆2H

, (3.1)

where ∆2 and ∆2H are the deformed and initial vertical fibre spacing, respectively. This
type of matrix deformation is reasonable when the solid phase deforms due to the
relative boundary motion rather than drag forces arising from the motion of the fluid
phase. The motion of the solid phase is neglected. This is a realistic approximation
for the endothelial glycocalyx and a reasonable approximation for skiing since the
velocity of the skis far exceeds that of the snow powder.

The flow past this periodic, diamond, figure 1(c), or rectangular, figure 1(d), shaped
fibre array is described by the two-dimensional Stokes equations written in terms of
the stream and vorticity functions

∇2ψ = ω, (3.2)
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∇2ω = 0. (3.3)

For the diamond shaped fibre array in figure 1(c), the boundary conditions are

ψ = ω = 0 on BC, (3.4)

∂ω

∂x
=
∂ψ

∂x
= 0 on GH, CD, (3.5)

ω = 0, ψ = U

(
a+

∆2

2

)
on FG. (3.6)

In addition, because of the no-slip condition on the fibre post, we require that

ψ =
∂ψ

∂n
= 0 on BH, (3.7)

ψ = U

(
a+

∆2

2

)
,

∂ψ

∂n
= 0 on DF, (3.8)

in which U is the mean velocity in the x-direction and n is the outward normal
unit vector. For the rectangular fibre array arrangement depicted in figure 1(d), the
corresponding boundary conditions are given by

ψ = ω = 0 on BC, (3.9)

∂ψ

∂x
=
∂ω

∂x
= 0 on CE and GE, (3.10)

ω = 0 ψ = U

(
a+

∆2

2

)
on GE, (3.11)

ψ =
∂ψ

∂n
= 0 on BH. (3.12)

Once the solution for the stream function and vorticity, ψ and ω, are obtained, the
dimensionless drag exerted on any given fibre per unit length is given by

F

µU
= a

∫ 2π

0

[ω sin θ − p cos θ] dθ. (3.13)

The Darcy permeability is readily calculated by applying the force balance on a unit
cell. This leads to

Kp

a2
=
π

c

µU

F
, (3.14)

where c, the solid fibre fraction, is given by

c =
2π(

2 + ∆1/a
) (

2 + ∆2/a
) . (3.15)

The dimensionless permeability parameter α in the Brinkman equation is, therefore,
given by

α =
H√
Kp

=
H

a

√
Fc

µUπ
. (3.16)

The pressure p is obtained by integrating the coupled relations

∂p

∂x
= µ

∂ω

∂y
, (3.17)
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∂p

∂y
= −µ∂ω

∂x
. (3.18)

In our calculations, equations (3.2) and (3.3) are solved by the method of Sangani
& Acrivos (1982). We write general solutions to (3.2) and (3.3) as†

ω = 2

(
4a1r − (4a1 + 2b1)a

2

r(2 ln a+ 1)

)
sin θ + 8

∞∑
n=2

sin(2n− 1)θ

×[nanr
2n−1 + (n− 1)a4n−2r1−2n(2nan − (2n− 1)bn)], (3.19)

and

ψ =

[
a1r

3

{
1− 4 ln r

2 ln a+ 1

(a
r

)2

+
2 ln a− 1

2 ln a+ 1

(a
r

)4
}

+ b1a
2r

{
1− 2 ln r

2 ln a+ 1

− 1

2 ln a+ 1

(a
r

)2
}]

sin θ +

∞∑
n=2

[
anr

2n+1

{
1− 2n

(a
r

)4n−2

+ (2n− 1)
(a
r

)4n
}]

+ bna
2r2n−1

{
1− (2n− 1)

(a
r

)4n−4

+ 2(n− 1)
(a
r

)4n−2
}]

sin(2n− 1) θ. (3.20)

Equations (3.19) and (3.20) are expressed in cylindrical coordinates so that the
boundary conditions on BC, GH and BH can be satisfied exactly. The unknown
coefficients an and bn are determined by applying the remaining boundary conditions in
some approximate sense. This is accomplished by a least-square collocation technique
adopted in Sangani & Acrivos (1982). We first select a sufficient number of collocation
points on either CD, DF and FG for the diamond fibre array, or on CE and EG for
the square fibre array, respectively. The boundary conditions are satisfied at discrete
points along these remaining boundaries and the resulting linear algebraic equations
for an and bn are determined in a least-square sense. The results converge as the
number of collocation points increases. We have also solved the biharmonic equation
for the stream function using a boundary integral method and obtained results in
good agreement with those presented herein.

The dimensionless force exerted on a fibre per unit length is obtained by evaluating
the integral in (3.13) using equations (3.17) to (3.20). Note that G(z) = G(x + iy) =
p− iψ is an analytic function so that

F

µU
= −Im

∫
γ

G(z) dz = −2πRe[res(G(z))], (3.21)

where res (G) denotes the residues of G(z) within the contour γ, defined by the closed
curve r = a. It is apparent that both p and ψ have simple poles at r = 0 and G(z) has
a simple pole at z = 0. One finds that, as shown in Sangani & Acrivos (1982), the
dimensionless drag per unit length

F

µU
= −8πa2(2a1 + b1)

2 ln a+ 1
(3.22)

depends only on the two leading coefficients a1 and b1, although their values depend
on all the other coefficients. The dimensionless Darcy permeability parameter α is
given by (3.16).

In figures 2, 3 and 4 we present the results for both the deformed hexagonal and

† Note there is a typographical error in equation [11] in Sangani & Acrivos (1982).
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Figure 2. The dimensionless drag on a unit length of fibre as a function of fibre solid fraction for
different values of λ = (2a+ ∆2)/(2a+ ∆1). (a) Results for diamond shaped fibre array. (b) Results
for rectangular fibre array.

square fibre arrays. If the results for the fibre drag per unit length are written in terms
of the fibre solid fraction c, F/µU is independent of the fibre radius and is only a
function of the aspect ratio of the fibre array, λ = (2a+∆2)/(2a+∆1). Thus in figure
2 we first present general results which are independent of the fibre radius. The fibre
solid fraction for the undeformed hexagonal array is twice that of the square array.
Figure 2 plots the dimensionless drag F/µU as a function of fibre solid fraction c
defined by (3.15). These results extend the solutions presented in Sangani & Acrivos
(1982) in which only results for λ =

√
3, the undeformed hexagonal fibre array, and

λ = 1, the undeformed square array, are presented. As the vertical fibre spacing
decreases, the rectangular fibre arrangement experiences monotonically increasing
drag on the fibres, as shown in figure 2(b). However, this is not true for a diamond
shaped fibre array. Because the hexagonal fibre matrix is completely isotropic, the
drag for λ =

√
3 and

√
3/3 should be the same. Thus, there must be a critical value

of λ for which the drag reaches a maximum and the monotonic behaviour with
increasing λ cannot be maintained. This is revealed in figure 2(a) where the result for
λ = 1 almost overlaps with that for λ = 0.5.

For application in the microcirculation, where a layer of endothelial glycocalyx
seems to be ubiquitous, we calculated the Darcy permeability for a compressed initially
hexagonal fibre array whose undeformed fibre spacing ∆1 = 7 nm and ∆2 = 13 nm.
Two fibre radii, a = 0.6 nm and a = 2 nm are considered herein since they are
representative of the sialyic acid side chains in glycosaminoglycans (GAG) and the
protein core in proteoglycans, respectively.

The variation of the dimensionless drag as the fibre matrix is compressed vertically
is shown in figure 3(a) for the initially square and rotated square (π/4) fibre arrays
when the initial fibre spacing, ∆1 = 7 nm, ∆2 = 7 nm for both arrays. Results are
shown for two fibre radii, 0.6 nm corresponding to GAG side chains and 2 nm, typical
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Figure 3. (a) Increase in the dimensionless fibre drag per unit length as the fibre matrix is
compressed vertically for two different fibre radii, a = 0.6 nm, GAG side chains in proteoglycans,
and a = 2 nm, the core protein in a proteoglycan. The undeformed square and rotated square (π/4)
fibre spacing ∆1 = ∆2H = 7 nm. (b) Variation of the Darcy permeability of the fibre matrix for an
initially hexagonal fibre arrangement in which ∆1 = 7 nm, ∆2H = 13 nm.

of a core protein. As expected the drag increases as ∆2 decreases. The two sets of
curves for a specific fibre radius a converge into a single curve for both arrays as
the fibre spacing between adjacent vertical fibres narrows. This is anticipated since, if
the fibres are sufficiently close to each other in the vertical direction, the horizontal
spacing plays only a minor role in determining the drag exerted on each fibre.
Therefore, in the dilute limit when ∆1 remains fixed and ∆2 becomes small, the Darcy
permeability for a square fibre array will be twice that for a diamond shaped array.
Figure 4 exhibits the streamline patterns in a unit cell for the two fibre arrangements.
It is clear that the streamlines are squeezed together as λ decreases.

Figure 3(b) shows the Darcy permeability for a deformed hexagonal fibre array
in which the initial fibre spacings are ∆1 = 7 nm and ∆2H = 13 nm. Note that this
fibre arrangement differs from our previous applications using the fibre matrix model
(Weinbaum et al. 1992; Fu et al. 1994) in which the fibre array is obtained by rotating
the square array through π/4 radians. Most of the calculations presented later in
this paper are based on the Darcy permeability shown in figure 3(b) for the initially
hexagonal fibre array which exhibits a strong nonlinear behaviour as the matrix is
compressed. As will be discussed later, this nonlinearity will cause a shift in the
pressure distribution and a large increase in the lift force on a moving surface at an
attack angle for large matrix deformations. For the endothelial glycocalyx a, ∆1 and
∆2H are prescribed. Since the local value of ∆2 depends only on h, see equation (3.1),
the variation of Kp as a function of h/H is obtained directly from the curves in figure
3(b) using a simple curve fit. For other applications it is a simple matter to construct
curves for Kp like those shown in figure 3(b) using the results in figure 2 and equation
(3.14).
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Figure 4. Flow patterns within the fibre matrix for both diamond shaped (a, b) and rectangular
(c, d) fibre arrays for ∆1/a = 3, (2a+ ∆2)/(2a+ ∆1) = 1/2 (a, c) and (2a+ ∆2)/(2a+ ∆1) = 1 (b, d).

4. One-dimensional analysis: gliding motion of a membrane
In this section, we will apply the one-dimensional lubrication theory developed

in § 2 to study the motion of a red cell membrane that penetrates the endothelial
glycocalyx. We are also interested in a more general model for an arbitrary one-
dimensional surface moving parallel to a fixed planar boundary. We shall show that
for this case closed-form solutions can be obtained for the pressure distribution
for an arbitrary h(x) provided the boundaries are not deformable. This analysis is
a simplified model for many applications in compressible porous media where the
leakage of the excess pressure at the lateral boundaries is unimportant. This simple
model is also used to illustrate the fundamental new hydrodynamic features that are
absent in classical lubrication theory. A related simplified model for an axisymmetric
rigid red cell moving in a circular tube lined with a surface glycocalyx is presented
in § 6.

We assume that the thickness of the fibre matrix in the fluid gap between the
two surfaces is small compared to the characteristic length in the x-direction. This
is a reasonable model for a red cell membrane that comes in near contact with the
endothelial surface in larger microvessels. We consider first the case of an arbitrary
h(x) and show that the one-dimensional Reynolds-type equation (2.25) can be solved
exactly. This exact solution will also be used to check the numerical method developed
for solving the full two-dimensional equation discussed in the next section.

One notes that equation (2.25) can be integrated directly yielding the general
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solution

f +
1

α2

dp

dx
(2f − h) = h+ C, (4.1)

where C is a constant. The constant C is evaluated by prescribing the leading- and
trailing-edge pressures. If the pressures at the leading and trailing edges of the cell
membrane are the same and α is only a function of x, C can be expressed as

C = −

∫ 1

0

α2(h− f)/(2f − h) dx∫ 1

0

α2/(2f − h) dx

. (4.2)

The pressure distribution from (4.1)is given by

p− p0 =

∫ x

0

α2(h− f + C)

2f − h dx, (4.3)

where p0 is the pressure at x = 0 and x = 1 if C is given by (4.2).
To examine the asymptotic behaviour of the pressure distribution in the fibre

matrix when α is large, we notice from (2.20) that in this limit f ∼ α−1. If we expand
the integrands in both equations (4.2) and (4.3), we obtain the following expressions
which are valid for large α:

C = −
∫ 1

0

α2dx

/∫ 1

0

α2

h
dx, (4.4)

p− p0 ∼ −
∫ x

0

α2(h+ C)

h
dx. (4.5)

If matrix compression were neglected and α were a constant p− p0 would be propor-
tional to α2. Our numerical results, which we present later in figure 15, show that this
power dependence on α is also approximately valid for the total lift force for α > 10.†

The total dimensionless lift force F is obtained by integrating (4.3) over the entire
surface. This leads to

F =

∫ 1

0

(p− p0) dx =

∫ 1

0

(1− x)
α2(h− f + C)

2f − h dx, (4.6)

where we have changed the order of integration in evaluating the double integral.
The velocity components, flow patterns and drag force on the membrane can be
calculated in a manner similar to that for classical lubrication theory. In general α
will be a highly nonlinear function of h as quickly surmised from figure 3(b). Once
h(x) is prescribed, equations (4.2) and (4.3) provide a remarkably simple solution for
the pressure distribution in the compressed matrix layer for any h(x). This will greatly
facilitate the treatment of deformable surfaces using iterative methods.

To illustrate the general behavior, we performed numerical calculations for a simple
example in which an inclined planar surface of length L moves at a constant velocity
over a thin fibre matrix. The undeformed thickness of the matrix is assumed to be h2

and the compression ratio k is defined by the ratio h2/h1, where h1 is the compressed
matrix thickness at the trailing edge. Typical solutions for the pressure distribution

† The authors wish to thank Professor Howard A. Stone for bringing to our attention the
asymptotic behaviour of the pressure field that scales as α2 for large values of α and the derivation
of equation (4.5).
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values of the undeformed α(h2) in which the compression ratio k = 4. (b) Pressure for various
compression ratios k in which α(h2) = 50, a value close to that predicted for a 100 nm thick
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Figure 6. Spatial variation of Kp for a 100 nm thick undeformed fibre matrix under various
compression ratios.

beneath this planar surface are shown in figure 5. Here the undeformed thickness h2

and α(h2) at the leading edge are prescribed. The slope of the plane (h2 − h1)/L is
given in terms of the matrix compression ratio, k = h2/h1, as (1− 1/k)h2/L, see figure
1. In figure 5(a), the pressure distribution for a moderately compressed matrix, k = 4,
is plotted for several increasing values of the undeformed permeability parameter
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Figure 7. The dimensionless lift force on a moving planar boundary as a function of compression
ratio k for different values of α(h2).

α(h2). Also shown for comparison are the predictions of classical lubrication theory,
the limiting case of (2.25) when α = 0. It is observed that the pressure increases
remarkably as α(h2) increases from zero, a pure fluid layer, to α(h2) = 100. The
pressure generated within the matrix for α(h2) = 100 is three orders of magnitude
greater than for α = 0. Figure 5(b) shows the change in the pressure distribution as
the matrix compression ratio is increased when α(h2) = 50, a value representative of
a 100 nm thick endothelial glycocalyx. The maximum possible compression ratio is
about 12. To illustrate how Kp varies with position and the compression ratio k we
have plotted in figure 6 the variation of Kp from leading to trailing edge for three
of the pressure profiles shown in figure 5(b). There is significant nonlinear variation
of Kp near the trailing edge only for the largest value of k, namely k = 10. The
large decrease in Kp from leading to trailing edge produces a pronounced shift in the
maximum pressure towards the trailing edge for large values of k, see figure 5. The
combined results in figure 5(a, b) lead to the dramatic increase in the integrated lift
force shown in figure 7, where the dimensionless lift force is plotted as a function of
k. We note that the total lift force on the moving surface increases as the compression
ratio k increases, due to the large increase in α as one approaches the trailing edge.
This is in contrast to the well-known result in classical lubrication theory for a slider
bearing where the lift force is a maximum when h2 ≈ 2.2h1 and h1 is fixed.

It is also of interest to plot the position of the maximum pressure xm/L as a
function of k for different values of α(h2). This is shown in figure 8, where we
notice that xm/L exhibits a more complicated behaviour than the lift force. For small
values of α(h2), the maximum pressure is achieved closer to the midpoint than for
α = 0, the pure fluid layer. However, as α(h2) increases there is a large shift in the
position of the maximum pressure towards to the trailing edge of the plate as k
increases. For the purpose of comparison, we have also calculated xm/L if the matrix
compression is neglected, i.e. α = α(h2) throughout the matrix. The results show that
there is a much larger shift in the pressure maximum toward the trailing edge when
matrix compression is considered. This is due to the large nonlinearity in the Darcy
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Figure 8. Shift of the maximum pressure on the moving surface. For comparison, results for
constant α throughout the matrix are shown by circles. The thick solid curve is the result for a pure
fluid layer.

permeability that develops as the matrix is compressed near the trailing edge. This
gives rise to the large asymmetry in the pressure profile shown in figure 5. Figure 8
also indicates that xm/L is nearly independent of α(h2) once α(h2) exceeds 20 for all
values of k.

Figure 9 illustrates the change in the streamline pattern as α(h2) increases. For α = 0
there is a small recirculation region near the trailing edge where the pressure gradient
is negative. However, as α(h2) increases, a dividing streamline develops starting near
the trailing edge and fluid is either expelled in front of the leading edge or ejected at the
trailing edge of the moving surface. This behaviour is more easily interpreted in terms
of the velocity profiles exhibited in figure 10, where horizontal velocity profiles are
presented at three positions: the leading edge x/L = 1, the trailing edge x/L = 0 and
xm/L, the position of the pressure maximum. The velocity component is normalized
relative to the sliding velocity U. In sharp contrast to a pure fluid layer, α = 0, the
horizontal velocity remains almost constant in the central region of the matrix for
large values of α, except for a thin transition layer near the boundaries where the
no-slip condition must be satisfied. In fact, as the Darcy term becomes larger and
dominates the effect of the viscous dissipation terms, the Brinkman medium reduces
to a Darcy medium in which a uniform plug flow proportional to the local pressure
gradient is anticipated. Therefore, the Brinkman medium bridges the transition from
a slow viscous creeping flow characteristic of classical lubrication theory to a Darcy
flow which satisfies a potential equation for the pressure field and no-slip conditions
cannot be satisfied. This transition in behaviour was also observed by the authors in
a recent study of the flow through a circular orifice in a Brinkman medium (Feng &
Weinbaum 2000). Although not shown, one finds that at large α the bulk motion in
the central region is small and it is only near the leading and trailing edges, where
the pressure gradient is large, that there is a significant bulk flow.

The key result of this section is the large increase in the pressure generated within
the fibre matrix as α(h2) increases. In the microcirculation, this would result in a
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Figure 9. Streamline patterns within the fibre matrix for four increasing values of the permeability
parameter α(h2). (a) α = 0, classical lubrication theory, (b) α(h2) = 5, (c) α(h2) = 20, (d) α(h2) = 100.
The fibre matrix is described by the same parameters as in figure 5.

huge repulsive force on a moving red cell if it attempted to penetrate the endothelial
glycocalyx and its membrane did not deform. Thus, even in larger arterioles and
venules where the red cells may not move in single file, one would expect to see a
small clearance between the red cell and the outer edge of the surface glycocalyx. This
prediction is consistent with the recent observations of Henry & Duling (1999) where
a thin fluid layer of 0.2 to 0.5 µm was measured in 10–15 µm diameter vessels. The
glycocalyx, though highly compressible, provides a protective barrier that prevents
adhesive interactions between the red cell and endothelial membranes and hence
prolongs the life time of the red cell.

5. Motion of a ski or snowboard
While the motion of red cells inside a microvessel provided the initial motivation for

this study, the behaviour of the red cell has a striking similarity to the gliding motion
of a ski or a snowboard on a thin layer of compressed dry powder. In this section,
we propose a two-dimensional fibre matrix model to analyse the mechanics of skiing.
Figure 11 is a schematic illustration of a ski or a snowboard on a thin layer of dry
powder, which is described by the Brinkman equation. A Cartesian coordinate system
is chosen in which the z-axis is in the vertical direction. We consider a rectangular
shaped ski or snowboard whose length and width are L and W , respectively. We
assume that the thickness of the lubricating layer does not vary in the y-direction
and is only a function of x. This implies that the permeability parameter α is also
independent of y. The sliding velocity is denoted by Uix. The primary difference
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Figure 10. Normalized horizontal velocity profiles in fibre matrix for representative α(h2). Three
sets of profiles are shown which correspond to the leading and trailing edges and the position where
the pressure reaches its maximum, xm/L.

between the red cell and the ski lies in the substantial pressure loss from the leakage
at the lateral edges of the skis, which is absent for a red cell if its membrane fills the
entire vessel circumference. While there are experimental data for the permeability of
snow under various conditions (Arons & Colbeck 1995; Jordan et al. 1999), there are
no data for how its permeability changes under compression. We, therefore, use the
same fibre matrix model as described in § 3 for the endothelial surface glycocalyx to
estimate the variation of α with h without any further attempt to model the detailed
crystal structure of the snow flakes. Our purpose is to provide a simple prototype
model to obtain some insight into this complicated problem. It is also emphasized
that for a ski the assumption that h/W � 1 is likely to be violated except for very
thin layers of compressed powder. The theory in its present form is more applicable
to a snowboard or toboggan. A different type of analysis needs to be developed for a
ski in which inertial effects are considered in the transverse direction and a centreline
theory is used to describe the axial pressure distribution.

By introducing the characteristic variables defined in § 2, one can write the dimen-
sionless Reynolds-type equation (2.23) for the pressure within the powder as

∂

∂x

[
f +

1

α2

∂p

∂x
(2f − h)

]
+

L2

W 2α2
(2f − h)∂

2p

∂y2
=
∂h

∂x
. (5.1)

Equation (5.1) is a second-order elliptic partial differential equation which needs
to be solved numerically. We have developed a numerical method based on the
pseudo-spectral collocation technique of Orszag (1971).



Lubrication theory in highly compressible porous media 303

y

x

L

z

U

h2

h1

W

Figure 11. Schematic illustration of a snowboard or ski compressing a thin layer of fresh powder.
Note the escape of air at lateral edges.

5.1. Numerical solution of the Reynolds-type equation

In order to solve the Reynolds equation (5.1), we expand the pressure in a double
series defined on the domain D = [0, 1]× [0, 1] as

p(x, y) =

∞∑
n=0

∞∑
m=1

pnmTn(2x− 1) sin(2m− 1)πy, (5.2)

in which pnm are unknown coefficients and Tn is a Chebyshev polynomial of order n.
Solution (5.2) already satisfies the boundary conditions at y = 0 and y = 1. When
(5.2) is substituted into (5.1) and the orthogonality of the sine function is employed,
one obtains the following set of algebraic equations for pnm

∞∑
n=0

pnm

(
2f − h
α2

[
d2

dx2
Tn(2x− 1)− L2

W 2
Tn(2x− 1)

]
+

d

dx

2f − h
α2

· d

dx
Tn(2x− 1)

)
=

(
1− 1

k
− ∂f

∂x

)
4

(2m− 1)π
, m = 1, 2, . . . . N. (5.3)

Using the orthogonality of the Chebyshev polynomial, one can express the derivatives
of Tn(x) appearing in (5.3) in terms of Chebyshev polynomials. The details of the
required formulae can be found in the appendix of Orszag (1971).

We choose the first M equations in (5.3) and truncate the infinite summation at its
N+2 term, where N is sufficiently large to ensure the convergence of the solution. The
coefficients pnm are obtained by applying equation (5.3) at N collocation points which
are the zeros of TN(x). These algebraic equations are combined with the boundary
condition p(0) = p(1) = 0 to solve for the N + 2 coefficients for a given m. The
numerical scheme is quite stable and convergent as N increases compared with the
solution expressed in a double Fourier series.

In our calculations, we use M = 50 and N = 100. The pressure at the centre point
of the snowboard varies within 0.1% for M > 100 and N > 200. The numerical
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Figure 12. Comparison of the pressure distribution on the centreline of a ski or snowboard for an
intermediate value of L/W = 10 and on an infinitely wide surface, L/W = 0, with no leakage of
air at the lateral edges. In both cases k = h2/h1 = 2. The thickness of the compressed snow powder
at the leading edge is assumed to be 2 cm and the value of α at this location, α(h2) = 100, a value
typical of moderately packed fresh snow. In the absence of experimental data for the variation of
Kp with compression for snow, we have applied the same simple fibre model as sketched in figure
1 for the endothelial glycocalyx.

results for the pressure at y = 1/2 when W/L > 20 are in excellent agreement with
the exact solution presented in the previous section for W/L→∞.

5.2. Results and discussion

To facilitate comparison with the one-dimensional solution the results for the pressure
are presented only at the centreline of the ski or snowboard, y = 1/2. One of the
most important parameters in this application is the choice of the undeformed Darcy
permeability for fresh snow powder. Here we assume that the powder is composed of
a fibrous matrix whose effective fibre radius a is 0.1 mm. However, as shown in figure
3 the results are not very sensitive to the value of a. For the purpose of illustrating
how large a pressure can be built up beneath a ski or snowboard, we will present
results for various values of α(h2). The actual value of the fibre spacing at the leading
edge, and hence the value of α(h2), in the present model has to be determined by
requiring that the total lift force generated by the compressed powder be equal to
the weight of the skier and his/her skis. We shall find that representative values of
α(h2) that are required to support a 70 kg human increase from 100 to 400 as the
compression ratio k decreases from 5 to 2. The Darcy permeability Kp predicted by
our fibre matrix model varies between 2.5× 10−9 m2 for α(h2) = 400 and 4× 10−8 m2

for α(h2) = 100. These predicted values lie in the same range as the measured values,
10−9 to 10−8 m2, for snow under various conditions (Jordan et al. 1999).

The fundamental difference between a red cell gliding on the endothelial glycocalyx
and the human skiing on fresh powder is schematically shown in figure 11. For the
skier or snowboarder there can be a very large loss in the excess pressure due to the
escape of the air at the lateral edges of the planing surface. The magnitude of this
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Figure 13. Pressure distribution and equal pressure contours under a snowboard. The aspect ratio
is L/W = 10 and the thickness of undeformed snow powder is 2 cm. α(h2) = 100.

loss in excess pressure is largely determined by the parameter L/W in the second
term in equation (5.1). For straight skis a typical of value of L/W is 20, whereas for
a snowboard it is closer to 5. In either case L2/W 2 � 1. We illustrate the essential
physics by presenting results for the pressure distribution for L/W = 10 in figure 12
for k = 2, a moderate compression, for both α = 0 (classical lubrication theory) and
α(h2) = 100, a value representative of moderately packed snow powder. Also shown
for comparison are the results for L/W = 0, the case where there is no leakage at the
lateral edges, as for the tightly fitting red cell. One observes that the dimensionless
excess pressure beneath a planar surface with L/W = 10 is two orders of magnitude
smaller than for L/W = 0. However, for L/W = 10 there is a large shift in the
maximum pressure towards the rear of a ski or snowboard even at this moderate
value of k. The pressure builds up gradually over most of the length of the ski and
there is a sharp drop near the trailing edge. This asymmetric pressure distribution
would exert a large torque on the skier’s ankles and the skier would adjust to a
smaller angle of attack.

Figure 13 shows the dimensionless two-dimensional pressure distribution and equal
pressure contours under a typical snowboard which has aspect ratio L/W = 10. Note
that the variation of pressure is almost linear in the logarithmic plot in figure 12, except
near the leading and trailing edges, indicating that the pressure decays exponentially
in the longitudinal direction from its peak value near the trailing edge. However, the
transverse pressure distribution exhibits a parabolic behaviour at any longitudinal
location along the snowboard. In fact, one can assume a parabolic pressure profile
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Figure 14. Normalized transverse velocity profiles in the fibre matrix at the lateral edge of a
snowboard for representative α(h2) for compression ratio k = 2. Three sets of profiles are shown at
x/L = 0.1, 0.5 and 0.9 and y/W = 0 or 1.

in the transverse direction and reduce the two-dimensional generalized Reynolds
equation to an equivalent one-dimensional equation, using a centreline theory that
assumes a simplified family of transverse pressure profiles.

It is also of interest to examine the velocity profile in the transverse direction at the
lateral edges y/W = 0 and 1 of the snowboard. One anticipates that these profiles
exhibit some form of slip condition similar to the well-known Joseph–Beaver slip
condition since the snowboard is sliding relative to the fixed porous medium. For this
purpose we present three transverse velocity profiles in figure 14 at x/L = 0.1, 0.5
and 0.9, corresponding to the rear, central and front edges, respectively. Note that
the transverse velocity vanishes at x/L = 0 or 1 since constant pressure is assumed
outside the Brinkman layer. Figure 14 clearly shows a slip-type behaviour as the
Darcy permeability decreases. The magnitude of the velocity is of the same order for
all values of α(h2). As α increases, both the lateral pressure gradient and the hydraulic
resistance of the matrix increase, yielding edge profiles that drastically change in
shape, but not magnitude.

Figure 15 provides an overall comparison of the changes in lift or repulsive forces
as α increases for a planar surface with L/W = 0 and L/W = 10. The transition for
the large increase in lift due to the porous medium occurs at α order one. For the
red cell the value of α at the leading edge, α(h2), where the membrane first penetrates
the glycocalyx is 160 based on a 0.4µm thickness for the undeformed matrix and an
open gap between fibres of 7 nm. For a human skier or snowboarder the value of
α at the leading edge is determined by the requirement that the total lift force must
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Figure 15. Increase in the dimensionless lift force as the value of α at the leading edge, α(h2),
increases. For a red cell, L/W = 0, h2 = 0.4 µm, ∆1 = 7 nm and α(h2) = 160. The properties of the
endothelial glycocalyx away from the leading edge are described by the curve for a = 0.6 nm in
figure 3. For a human skiing on a planar surface with L/W = 10, we require that the value of α(h2)
be chosen such that the lift force supports a 70 kg person when L = 150 cm. The critical value of
α depends on the compression ratio, k = h2/h1, of the surface. If h2 = 2 cm, α(h2) ∼ 400 for k = 2
and α(h2) ∼ 100 for k = 5.

equal the weight of the skier plus his/her equipment. The value of α at the leading
edge required to achieve this lift will depend on k, the compression ratio, and, as
observed in figure 15, will decrease from about 400 to 100 as k increases from 2 to
5. By digging one’s heels into the snow one can achieve the same lift with a small
compression at the leading edge and a large compression at the trailing edge. This
will also lead to a much larger drag force (not shown).

6. Pressure-driven flow of a red cell in a capillary
The results of the analysis presented in § 4 have important implications for the in

vivo rheology of blood in the microcirculation in which the endothelial glycocalyx
plays a vital role. We are interested, in particular, in the role of the endothelial
surface glycocalyx in determining the rheological properties of blood and the pop out
phenomenon in which the red cell will rise off the endothelial surface and then glide
near the edge of the surface matrix layer. Although limited experimental data are
available on the material properties of the glycocalyx, the fibre matrix model based
on the Brinkman equation has been applied to several biological transport problems
where it has successfully predicted the measured hydraulic and diffusive permeability
coefficients (Weinbaum et al. 1992; Fu et al. 1994; Weinbaum 1998; Hu & Weinbaum
1999). The advantage of the Brinkman equation lies in its simplicity and that one
does not need detailed knowledge of the glycocalyx structure to estimate Kp. We can
thus use the model in § 3 to represent the fibre deformation. Although this model is
based on a flow transverse to a periodic fibre array, these results compare quite well
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Figure 16. Axisymmetric motion of a deformed red cell in a capillary lined with endothelial surface
glycocalyx. The model assumes that the red cell penetrates into the surface glycocalyx and two
spherical caps are attached to its front and rear to ensure that the surface and volume are unchanged
during deformation.

with those for a randomly distributed fibre matrix (Ethier 1991). We first present a
simple geometric model for the pressure-driven motion of an idealized red cell which
penetrates into the glycocalyx and then examine the effect of this motion on the tube
hematocrit and apparent viscosity.

6.1. Model and formulation

There have been numerous previous models for the motion of red cells in microvessels
(Lighthill 1968; Fitz-Gerald 1969; Tozeren & Skalak 1978; Secomb et al. 1986;
Damiano 1998; Secomb et al. 1998). Early studies used classical lubrication theory
to describe the fluid layer near the capillary wall. The most recent investigations
have applied mixture theory to describe a glycocalyx with no deformation and, with
the exception of Secomb et al. (1998), have assumed that the red cell membranes
do not penetrate the glycocalyx. Secomb et al. (1986) have shown that axisymmetric
lubrication theory yields very accurate results for rigid spheres even for moderate
sphere-to-tube diameter ratios. We thus wish to generalize the analysis in § 2 to treat
the axisymmetric motion of a rigid pellet in a circular tube which has a deformable
matrix lining its walls, as illustrated in figure 16. The simplified shape assumed for
the red cell pellet in figure 16 is a cylinder with a linearly varying radius with
hemispherical caps at both its front and rear surfaces. The length of the cell and
the size of the caps are determined by requiring the surface area and the volume
of the red cell, which in our calculation, are 141.6 µm2 and 91.5 µm3, respectively, to
remain constant. A uniform pressure is applied at both the front and rear surfaces
and the spherical cap at the front enters the matrix where the sidewall starts. The
pellet dimensions are shown in figure 16 for a 5 µm diameter capillary in which the
surface glycocalyx is 0.4 µm thick and k = 2. We are primarily interested in the effect
of varying k on the pellet motion. In this highly idealized model the deformation of
the red cell is neglected.

The dimensionless Brinkman equation in cylindrical coordinates is given by

1

r′
∂

∂r′

(
r
∂u′z
∂r′

)
=
∂p′

∂z′
+ α2u′z, (6.1)
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where the dimensionless primed variables are defined by

u′z =
uz

Uc

, r′ =
r

R
, z′ =

z

R
, p′ =

P

µUcL/R2
. (6.2)

Here R is the vessel radius and Uc is the translational velocity of the red cell. The
permeability parameter α is now defined as

α =
R√
Kp

. (6.3)

For convenience, we now drop the prime on the dimensionless quantities.
The solution to (6.1) which satisfies the no-slip boundary conditions on the capillary

wall and the cell surface closely parallels the derivation in Damiano et al. (1996) except
that no intervening fluid layer is present between the red cell and the edge of the
glycocalyx. The axial velocity is given by

uz = A

[
I0(αr)− I0(α)

K(α)
K0(αr)

]
+

1

α2

[
K0(αr)

K0(α)
− 1

]
dp

dz
, (6.4)

where

A =

1− 1

α2

[
K0(αrc)

K0(α)
− 1

]
dp

dz

I0(αrc)− I0(α)

K0(α)
K0(αrc)

.

Here rc(z) denotes the shape of the red cell and I and K are modified Bessel functions.
When equation (6.4) is substituted into the continuity equation and integrated, one
obtains

q0

2
=
r2
c

2
+

∫ 1

rc

uz(r, z)r dr, (6.5)

where q0 is the total flux through the cross-section normalized by UcR
2. Substituting

(6.4) into (6.5), one obtains the following Reynolds-type equation for an arbitrary
axisymmetric red cell flowing through a circular tube coated by a layer of fibre matrix:

dp

dz
=

Rq0 − 1
2
r2
c + C/D

B +
1

α2

[
K0(αrc)

K0(α)
− 1

]
C/D

. (6.6)

Here the auxiliary functions B, C and D are given by

B =
r2
c − 1

2α2
+

1

α3K0(α)
[rcK1(αrc)− RK1(α)],

C =
RI1(α)− rcI1(αrc)

α
+

I0(α)

αK0(α)
[RK1(α)− rcK1(αrc)],

D = I0(αrc)− I0(α)K0(αrc)

K0(α)
,

respectively. Note that in (6.6) rc is a function of z and that α is determined by the
local compression of the matrix layer. In order to determine the pressure distribution,
q0 has to be prescribed. If the red cell is freely suspended, the total applied force has
to vanish. This zero-drag condition, which we describe next, uniquely determines the
motion.
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We choose a control volume, bounded by two cross-sections at z = 0 and z = L in
figure 16 and the corresponding segment of tube wall. Since the freely suspended red
cell does not exert a net force, the total force applied on this control volume must
be zero for steady flow. Integrating the Brinkman equation over any volume (V), we
obtain the following relation:∫ ∫

∂V
µ
∂u

∂n
dS −

∫ ∫ ∫
V
µ

Kp

udV =

∫ ∫
∂V
pndS, (6.7)

where n is the normal unit vector of the control volume. Note the second term, which
is absent for Stokes flow, represents a body force within the control volume. This
force is balanced by the drag force on the fibres.

When equation (6.7) and the lubrication approximation are applied, one finds that

2π

∫ L

0

[
1

2

dp

dz
− τw − α2

∫ 1

rc

ur dr

]
dz = 0, (6.8)

where τw , the shear stress exerted on the tube wall from (6.4), is given by

τw = µ
∂vz

∂r

∣∣∣∣
r=R

= − K1(αR)

αK0(αR)

dp

dz
+ Aα

[
I1(αR) +

I0(αR)K1(αR)

K0(αR)

]
. (6.9)

The Reynolds equation, together with the zero-drag condition (6.8) are sufficient to
solve for the pressure distribution and the total flux q0.

6.2. Results and discussion

We assume that the glycocalyx can be modelled by the fibre matrix structure described
in § 3. For comparison with previous studies, we consider a red cell flowing through a
5 µm capillary coated by a 0.5 µm thick glycocalyx as shown in figure 17. Theoretical
predictions for the dimensional pressure distribution along the tube axis for a red
cell velocity of 0.1 cm s−1 are shown in the upper portion of figure 17. This velocity
was chosen to provide easy comparison with the results in Damiano (1998) where
all predictions are based on this velocity. However, this velocity is two orders of
magnitude greater than the region of 0 to 20 µm s−1 where the red cell pop out
phenomenon is observed in Vink & Duling (1996). For the rigid pellet model employed
herein all results for the pressure distribution scale linearly with the velocity and
thus it is a simple matter to convert the pressure profiles in figure 17 to velocities
characteristic of the pop out regime. In Damiano’s model the local rate of change
in isotropic membrane tension is in equilibrium with the fluid shear stress and both
membrane bending and shear elasticities are neglected. Secomb et al. (1986) have
shown that this is a good approximation at high red cell velocities. In this limit the
red cell assumes a shape that is very close to a circular cylinder with a hemispherical
cap. In our rigid pellet model the relative penetration of the red cell membrane into
the glycocalyx at the trailing edge is given by β = (rc(0) − rc(L))/(R − rc(L)). This
can be written as β = 1 − 1/k in terms of the matrix compression ratio k defined
previously. The curves in figure 17 show a large pressure increase over the length of
the cell that grows exponentially as the penetration β increases. The behaviour of
the pressure resembles that presented earlier for a gliding plane, except for the large
pressure drop that occurs across the cell due to the pressure-driven flow. The curves
with symbols in figure 17 are the pressure profiles for α = 0, a rigid tube without
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Figure 17. Dimensional pressure distribution over the length of a red cell moving at 0.1 cm s−1 in
a 5 µm diameter vessel with a uniform 0.5 µm thick glycocalyx as a function of the penetration
parameter β = 1− 1/k. The viscosity of the plasma µ is assumed to be 0.01 dyn s cm−2. Five curves
are presented from no penetration, to high penetration. Note the pressure drop increases by almost
three orders of magnitude when the membrane invades 90% of the glycocalyx at the trailing edge.
The maximum pressure shifts to the trailing edge due to the large resistance of the compressed
fibres in that region. For comparison, results for a smooth capillary tube (α = 0) with β = 0, 0.9
and h2 = 0.5 µm are shown by the lower curves with symbols.

glycocalyx, in which the parameter β = 0 and 0.9. The monotonically increasing
profiles for β = 0 are qualitatively similar to those predicted in Damiano (1998).

The value of α for the undeformed matrix for the curves in figure 17 is approx-
imately 1000 and the pressure differential on the hemispherical caps is the primary
contribution to the total driving force. In fact, the zero drag condition applied on the
red cell membrane requires that this pressure drop be balanced by the summation
of the shear stress and the component of the pressure on the inclined surface in the
axial direction. Since there is only a small bulk flow except near the leading and
trailing edges where there are steep pressure gradients, one finds (not shown) that the
shear stress on the red cell does not vary significantly as the membrane penetrates the
glycocalyx, but the pressure contribution grows substantially due to the large increase
in drag from the fibres. Physically, the fluid within the matrix has to be expelled
by the slanting membrane. Thus, a much greater driving force is needed to achieve
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the same cell velocity, compared to the non-penetrating case. The high penetration
creates a large pressure drop across the cell, an effect which was absent for the gliding
motions of a planar surface over a wall in an unbounded medium considered in § 4.
The results in figure 17 provide only a rough qualitative guide to the increase in the
pressure drop that results from the glycocalyx penetration at low red cell velocities.
The large increase in pressure would deform the cell and at these low velocities the
bending moments associated with the membrane skeleton would play an important
role in determining the deformed cell shape. The elegant analysis in Secomb et al.
(1986), which considers these bending moments, is required to determine more real-
istic red cell shapes. Despite this limitation figure 17 provides a rough description of
the pop out phenomenon. The curve for β = 0.9 would be representative of the initial
configuration and as the red cell velocity increased the value of β would decrease,
leading to a family of curves similar to that shown in figure 17. In figure 17 the
velocity is constant whereas in the pop out the pressure driving force is constant and
the velocity of the red cell would increase.

The presence of the glycocalyx affects two important rheological quantities: the
apparent viscosity ratio, µapp, and the ratio of tube-to-discharge hematocrit, HT/HD .
These quantities can be determined from the solution for the driving force πR2∆P
over the entire length of the cell and the actual flux through any cross-section.

Because the repulsive force generated within the glycocalyx prevents the cell from
touching the capillary wall, the red cells will be driven toward the centre of the
capillary. As a result, the red cell velocity Uc is greater than the average plasma
velocity, ū. By applying mass conservation, one can readily show that

ū

Uc

= q0 =
HT

HD

. (6.10)

Figure 18(a, b) shows the pressure drop ∆P across the length of the cell and the
tube-to-discharge hematocrit ratio HT/HD for both 5 and 6 µm capillaries lined with
a 0.5 µm thick glycocalyx. It is seen that ∆P grows exponentially with respect to the
penetration parameter β, whereas HT/HD approaches unity. The increase of HT/HD

agrees with one’s intuition, since the effective diameter of the capillary is reduced as
the cell penetrates the glycocalyx. For a given value of penetration, the 6 µm capillary
always exhibits a larger average flux since the fractional area occupied by the cell is
larger than for a 5 µm capillary. However, the pressure drop for a 6 µm capillary is
lower than for a 5 µm capillary primarily due to the decreased length of the moving
red cell, since cell volume is conserved.

We are particularly interested in examining whether the red cell membrane will
penetrate the glycocalyx when the cell moves at velocities Uc > 100 µm s−1. The
apparent viscosity ratio of whole blood moving in a capillary is given by Damiano
(1998) as

µapp =
1

8

[
R

L

dp′0
dz′

+
πR3

Vc

(
∆p′ − ū

Uc

dp′0
dz′

)
HD

]
, (6.11)

where Vc denotes the cell volume, ∆p′ is the dimensionless pressure drop over the
cell, and dp′0/dz′ is the dimensionless pressure gradient in the plasma between cells;
dp′0/dz′ can be obtained from the solution for a pressure-driven flow in a tube coated
by a layer of glycocalyx in the absence of red cells. The prime indicates dimensionless
variables. The difference between (6.11) and the original equation (21) in Damiano
(1998) arises from the characteristic length in the axial direction. We have used the
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Figure 18. (a) Dimensional pressure drop over the cell length as a function of penetration parameter
β = 1−1/k for both 5 and 6 µm capillaries lined with a 0.5 µm thick glycocalyx for a red cell moving
at 0.1 cm s−1. (b) The ratio of tube-to-discharge hematocrit HT/HD for same capillary geometry as
in (a). Note that for the 6 µm capillary, the effective diameter of the cell is also larger. Both curves
approach unity as the penetration increases.

total length of the red cell, L, as the characteristic length scale, whereas Damiano
used the radius of the capillary instead.

The apparent viscosity ratio calculated using (6.11), even when β = 0 in figure 17
and the red cell moves at the edge of the glycocalyx, is one order of magnitude larger
than that measured in vivo (Pries et al. 1994). This suggests that at high velocities a
thin fluid layer may exist between the edge of the glycocalyx and the red cell. This
hypothesis is consistent with the measurements in Vink & Duling (1996) and Henry &
Duling (1999). However, Damiano’s calculations, which assume the presence of such
a fluid layer, predict values of µapp for 5, 6 and 7 µm capillaries which are a factor of
4 lower than the experimental observations in Pries et al. (1994). The large difference
in the predicted value of ∆p or µapp between Damiano and the results in figure 18(a)
for β = 0 is due to two effects. One is the large difference in Darcy resistivity assumed
in the two models for the undeformed matrix and the second is the thin plasma layer
just mentioned. In our model, the undeformed matrix has a hydraulic resistivity of
O(1011) dyn s cm−4, corresponding to an open gap between fibres ∆2H of 7 nm. This
resistivity is three orders of magnitude greater than that used in Damiano (1998).
The values assumed for the Darcy resistivity in Damiano are based on filtration
gels with proteoglycans rather than experiments where the capillary selectivity and
permeability coefficients are measured in vivo as in the present analysis. If we want to
match the measured µapp, our calculations indicate that a hydraulic resistivity which is
approximately O(1010) dyn s cm−4 should be used if there is no pure fluid layer above
the glycocalyx. If there is a pure fluid layer above the glycocalyx and our predicted
resistivity for a fibre spacing of 7 nm is used, we find that the measured µapp of 11 for
a 5 µm capillary in Pries et al. (1994) can be achieved if the thickness of this pure fluid
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layer is about 0.1 µm. This is about 2.5% of the functional diameter of the capillary.
However, if Damiano’s resistivity is used, one finds that the red cell membrane would
need to penetrate 75% of the glycocalyx at the trailing edge in order to match the
measured µapp ≈ 11. If the red cell were to just fill the entire lumen and not invade
the glycocalyx, the calculated µapp using Damiano’s resistivity is approximately 5.2.
This is still only one half the measured value. While the mechanical properties of
the glycocalyx are still open to question, the present model for Kp compares more
favourably with the measurements in Vink & Duling (1996) where the edge of the
FITC-dextran column is approximately 0.2 µm from the edge of the red cell when it
is moving with velocities greater than 125 µm s−1.

Secomb et al. (1998) introduced a variable Kp in their model which allows for a
transition layer at the outer edge of the glycocalyx. However, their results indicate that
varying the thickness of this transition layer over the range 0.05–0.4µm has very little
effect on HT/HD and the pressure drop ∆P . In the in vitro experimental investigation
of Adamson & Clough (1992), where cationized ferritin (CF), 10 nm diameter, was
used as a marker for the outer edge of the endothelial surface glycocalyx in frog
mesentery capillaries, one observes a uniform layer of about 100 nm separating the
capillary wall and the CF layer when plasma is present. The electron micrographs
of the vessel wall show that the CF layer forms a sharp and distinct interface at
the edge of the surface glycocalyx. Since the glycocalyx is negatively charged, CF
would have exhibited a diffuse labelling at the outer edge of the matrix if there were
loosely spaced fibres in this region. These results support the hypothesis that the
molecular sieve starts at the edge of the glycocalyx and that there is no transition
layer of sparser matrix near its edge. The recent experiments of Henry & Duling
(1999) lend further credence to this hypothesis. These investigators examined the
penetration of the glycocalyx by both low and high molecular weight FITC-dextrans.
They observed that FITC-dextran-70 is able to penetrate the outer border of the
glycocalyx only after sustained treatment with the enzyme hyaluronidase and that the
depth of penetration depended on both the dose and time. In contrast, large (above
500 kDa) FITC-dextrans were still excluded. One would conclude that the smaller
structures that determine the molecular sieve (most likely glycoprotein side chains) are
selectively removed starting at the outer edge of the glycocalyx, but that in the deeper
regions these structures are still present. This suggests that the molecular sieve for
the low molecular weight dextrans is distributed throughout the surface matrix layer.

7. Concluding remarks
Motivated by recent in vivo studies in the microcirculation and a rapidly growing

recognition of the importance of the endothelial glycocalyx, we have developed
a generalized lubrication theory for highly compressible porous layers based on
an effective-medium approach. This theory also accounts for order of magnitude
variations in the Darcy permeability within the porous layer. The predictions of this
theory support Vink & Duling’s (1996) in vivo experimental observations for both the
pop out phenomenon and final equilibrium position of the red cell at physiologically
observed velocities in 5–7 µm diameter mammalian capillaries. When a 8 µm red cell
first squeezes into a capillary of smaller diameter or when it passes through an arterial
sphincter, it will elongate and crush the glycocalyx if its velocity is small. As the red cell
velocity increases, the red cell membrane will gradually rise off the vessel wall due to
the large repulsive force generated within the glycocalyx. This pop out is characterized
by an increased clearance between the capillary wall and the red cell membrane. The
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measurements in Vink & Duling (1996) indicate that when Uc > 20 µm s−1, the cell
membrane will first lift off the glycocalyx, creating a thin layer of plasma between
the matrix and the red cell membrane whose thickness then increases with increasing
Uc. Although the present results are for a rigid planar membrane, the theory can
be extended to a deformable red cell membrane using the approach in Secomb et
al. (1986). Of particular interest is the effect of membrane bending moments on red
cell shape at low velocities where there are large compressions of the extracellular
matrix. Future work should also include the possible existence of another thin layer
of deformable surface glycocalyx coating the red cell membrane, an effect which is
not taken into account in the present model.

When the present theory is applied to the motion of a ski or snowboard, a
strikingly similar behaviour is observed for the pressure distribution and the lift force.
By introducing a small tilt angle, a hydrodynamic lift force can be generated which
is large enough to sustain a 70 kg human. Several extensions of the basic problem
treated in this paper are of interest. In an effort to understand more sophisticated
manoeuvres in skiing, such as turning and stopping, one must consider the mechanics
of edging, where the snow powder is compressed in the transverse direction. The
numerical method adopted in § 5 is greatly simplified when the lubricating layer does
not vary in the transverse direction. This method needs to be generalized to apply to
the situation in which h is an arbitrary function of both x and y. The present theory
is only qualitatively applicable to long slender planing surfaces, such as skis, where
the lubrication approximation H/W � 1 is not valid. A second complication is that
transverse pressure gradients are much larger than the centreline pressure gradients
leading to characteristic transverse velocities where inertial effects can be important.
For these situations a simplified one-dimensional analysis needs to be developed using
a centreline theory that takes into account fluid inertia.

In principle nonlinear inertial effects are not difficult to include. Since the Darcy
term appearing in the Brinkman equation can also be incorporated in the Navier–
Stokes equation to represent an average effect of the porous material (Hornung 1996),
one can investigate the relative importance of viscous dissipation, fluid inertia and ma-
trix deformation in the time-dependent draining of fluid from thin fibre matrix layers,
where one has an inertial squeeze film between two closely juxtaposed solid surfaces.

The authors acknowledge the financial support from NIH grant HL 44485. This
research was performed by J. Feng in partial fulfillment of the requirement of the
PhD degree from the City University of New York.

REFERENCES

Adamson, R. H. & Clough, G. 1992 Plasma proteins modify the endothelial cell glycocalyx of frog
mesenteric microvessels. J. Physiol. (Lond.) 445, 473–486.

Arons, E. M. & Colbeck, S. C. 1995 Geometry of heat and mass transfer in dry snow – a review
of theory and experiments. Rev. Geophys. 33, 463–393.

Barnard, A. C. L., Lopez, L. & Hellums, J. D. 1969 Basic theory of blood flow in capillaries.
Microvasc. Res. 1, 23–34.

Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid in a dense
swarm of particles. Appl. Sci. Res. A 1, 27.

Curry, F. E. 1986 Determinants of capillary permeability: a review of mechanisms based on single
capillary studies in the frog. Circ. Res. 59, 367–380.

Damiano, E. R. 1998 The effect of the endothelial-cell glycocalyx on the motion of red blood cells
through capillaries. Microvascular Res. 55, 77–81.

Damiano, E. R., Duling, B. R., Ley, K. & Skalak, T. C. 1996 Axisymmetric pressure-driven flow



316 J. Feng and S. Weinbaum

of rigid pellets through a cylindrical tube lined with a deformable porous wall layer. J. Fluid
Mech. 314, 163–189.

Ethier, C. R. 1991 Creeping flow through heterogeneous fibrous materials. AIChE J. 37, 1227–1236.

Feng, J., Ganatos, P. & Weinbaum, S. 1998 Motion of a sphere near planar confining boundaries
in a Brinkman medium. J. Fluid Mech. 375, 261–292.

Feng, J. & Weinbaum, S. 2000 A model for flow through a planar orifice in a fibre-filled medium
with application to fenestral pores in biological tissues. Chem. Engng Sci. (to appear)

Fitz-Gerald, J. M. 1969 Mechanics of red-cell motion through very narrow capillaries. Proc. R.
Soc. Lond. B 174, 193–227.

Fu, B. M., Weinbaum, S., Tsay, R. Y. & Curry, F. E. 1994 A junction-orifice-fiber entrance layer
model for capillary permeability: Application to frog mesenteric capillaries. J. Biomech. Engng
116, 502–513.

Henry, C. B. & Duling, B. R. 1999 Permeation of the luminal capillary glycocalyx is determined
by hyaluronan. Am. J. Physiol. 277, H508–H514.

Hornung, H. 1996 Homogenization and Porous Media. Springer.

Hou, J. S., Mow, V. C., Lai, W. M. & Holmes, M. H. 1991 An analysis of the squeeze-film
lubrication mechanism for articular cartilage. J Biomech. 25, 247–259.

Howells, I. D. 1974 Drag due to the motion of a Newtonian fluid through a sparse random array
of small fixed rigid objects. J. Fluid Mech. 64, 449–475.

Howells, I. D. 1998 Drag on fixed beds of fibres in slow flow. J. Fluid Mech. 355, 163–192.

Hu, X. & Weinbaum, S. 1999 A new view of Starling’s hypothesis at the microstructural level.
Microvascular Res. 58, 281–304.

Jordan, R. E., Hardy, J. P., Perron, F. E. & Fisk, D. J. 1999 Air permeability and capillary rise as
measures of the pore structure of snow: an experimental and theoretical study. Hydrological
Proc. 13, 1733–1753.

Kenyon, D. E. 1979 A mathematical model of water flux through aortic tissue. Bull. Math. Biol. 41,
79–90.

Lai, W. M. & Mow, V. C. 1980 Drag-induced compression of articular cartilage during a permeation
experiment. Biorheology 17, 111–123.

Lighthill, M. J. 1968 Pressure-forcing of tightly fitting pellets along fluid-filled tubes. J. Fluid
Mech. 34, 113–143.

Luft, J. H. 1965 Fine structure of capillary and endocapillary layer as revealed by ruthenium red.
Proc. Fed. Am. Soc. Expl Biol. 25, 1773–1783.

Lundgren, T. S. 1972 Slow flow through stationary random beds and suspensions of spheres.
J. Fluid Mech. 51, 273–299.

Michel, C. C. 1997 Starling: the formation of his hypothesis of microvascular fluid exchange and
its significance after 100 years. Expl Physiol. 82, 1–30.

Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50,
689–703

Pries, A. R., Neuhaus, D. & Gaehtgens, P. 1992 Blood viscosity in tube flow: Dependence on
diameter. Am. J. Physiol. 263, H1770–H1778.

Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F. & Gaehtgens, P. 1994
Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915.

Sangani, A. S. & Acrivos, A. 1982 Slow flow past periodic arrays of cylinders with application to
heat transfer. Intl J. Multiphase Flow 8, 193–206.

Schlichting, H. 1979 Boundary Layer Theory, 6th Edn. McGraw-Hill.

Schmid-Schoenbein, H. 1999 Self organized blood flow observed by in in vivo rheoscopy: High
resolution flow visualization of red blood cells traveling from the arterioles to the vessels
in living microvascular beds. Plenary Lecture Euromech. Colloquium 389, Gratz, Austria, April
20–24.

Secomb, T. W. & Gross, J. F. 1983 Flow of red blood cells in narrow capillaries: role of membrane
tension. Intl J. Microcir. Clin. Exp. 2, 229–240.

Secomb, T. W., Hsu, R. & Pries, A. R. 1998 A model for red blood cell motion in glycocalyx-lined
capillaries. Am. J. Physiol. 274, Heart Circ. Physiol. 43:H1016–1022.

Secomb, T. W., Skalak, R., Ozkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red cell in
narrow capillaries. J. Fluid Mech. 163, 405–423.



Lubrication theory in highly compressible porous media 317

Tam, C. K. W. 1969 The drag on a cloud of spherical particles in low Reynolds number flow.
J. Fluid Mech. 38, 537–546.

Tozeren, H. & Skalak, R. 1978 The steady flow of closely fitting incompressible elastic spheres in
a tube. J. Fluid Mech. 87, 1–16.

Tsay, R. & Weinbaum, S. 1991 Viscous flow in a channel with periodic cross-bridging fibres: exact
solutions and Brinkman approximation. J. Fluid Mech. 226, 125–148.

Vink, H. & Duling, B. R. 1996 Identification of distinct luminal domains for macromolecules,
erythrocytes and leukocytes within mammalian capillaries. Circ. Res. 71, 581–589.

Wang, H. & Skalak, R. 1969 Viscous flow in a cylindrical tube containing a line of spherical
particles. J. Fluid Mech. 38, 75–96.

Wang, W. & Parker, K. H. 1995 The effect of deformable porous surface layers on the motion of
a sphere in a narrow cylindrical tube. J. Fluid Mech. 283, 287–305.

Weinbaum, S. 1998 Models to solve mysteries in biomechanics ar the cellular levels; a new view of
fibre matrix layer. Ann. Biomed. Engng. 26, 1–17.

Weinbaum, S., Tsay, R. & Curry, R. E. 1992 A three-dimensional junction-pore-matrix model for
capillary permeability. Microvascular Res. 44, 85–111.


